A refinement of the Adams' conjecture on theta correspondence

Rui Chen

Based on joint work with Jialiang Zou and joint work with Wee Teck Gan

April 2, 2024

Elementary Scenario

 ω : fin-dim rep of finite group $G \times H$. Decompose as G-mod:

$$\omega = \bigoplus_{\pi \in \operatorname{Irr}(G)} \pi \boxtimes \Theta(\pi)$$

 $\Theta(\pi)$: multiplicity space of π , inherit H-action from ω . Get:

$$\Theta: K_0(G) \longrightarrow K_0(H),$$

where $K_0(G)$ denotes the Grothendieck group of Irr(G).

This scenario appears in many places, like: Schur–Weyl duality, Deligne–Lusztig theory, and also theta correspondence.

Weil representation

F: local field of char 0; E: quadratic extension of F. Given:

- lacktriangle Hermitian space V and skew-Hermitian space W;
- **a** auxiliary data (ψ_F, χ_V, χ_W) .

Define: $W = \operatorname{Res}_{E/F}(V \otimes_E W)$, equipped with:

$$\langle \cdot, \cdot \rangle = \operatorname{tr}_{E/F} \left((\cdot, \cdot)_V \otimes \langle \cdot, \cdot \rangle_W \right).$$

We have a Weil rep ω_{ψ_F} on the \mathbb{C}^{\times} -cover $\widetilde{\mathrm{Sp}}(\mathcal{W})$ of $\mathrm{Sp}(\mathcal{W})$.

By Kudla, (ψ_F, χ_V, χ_W) specifies a splitting:

$$U(V) \times U(W) \longrightarrow \widetilde{Sp}(W).$$

Let $\omega = \omega_{\psi_F, \chi_V, \chi_W}$ be the pull back of ω_{ψ_F} , called the Weil rep.

Howe duality

For $\pi \in Irr(U(W))$, consider maximal π -isotypic quotient of ω :

$$\pi \boxtimes \Theta(\pi)$$
,

 $\Theta(\pi)$: multiplicity space of π , which is a *finite length* rep of $\mathrm{U}(V)$.

Theorem (Howe duality)

- If $\Theta(\pi) \neq 0$, then it has a unique irred quotient $\theta(\pi)$.
- Moreover, the map

$$\theta : \operatorname{Irr}(\mathrm{U}(W)) \setminus \{\pi \mid \theta(\pi) = 0\} \longrightarrow \operatorname{Irr}(\mathrm{U}(V))$$

is injective.

Natural Question: Describe it!

L-parameter and component group

Let $n = \dim_E W$. An L-parameter of $\mathrm{U}(W)$ is an n-dim rep

$$\phi: WD_E \longrightarrow \mathrm{GL}_n(\mathbb{C}),$$

which is *conjugate self-dual* of parity $(-1)^{n-1}$. It is said:

- \blacksquare discrete: if ϕ is multiplicity free;
- tempered: if the W_E has bounded image.

In general, we can write:

$$\phi = \varphi + \sum_{i} m_{i} \phi_{i} + (\varphi^{c})^{\vee},$$

where each ϕ_i has parity $(-1)^{n-1}$, and φ is bad parity part. Set:

$$A_{\phi} = \prod_{i} \mathbb{Z}/2\mathbb{Z} \, a_{i}.$$

Local Langlands correspondence

There is a finite to one surjective map:

$$LL: \bigsqcup_{W} \operatorname{Irr}(\mathrm{U}(W)) \longrightarrow \Phi(n),$$

where the disjoint union runs over all n-dim skew-Herm spaces W, and $\Phi(n)$ is the set of L-parameters. For each $\phi \in \Phi(n)$, set:

$$\Pi_{\phi}(\mathrm{U}(W)) = LL^{-1}(\phi) \cap \mathrm{Irr}(\mathrm{U}(W)).$$

Then we have a bijection

$$J: \bigsqcup_{W} \Pi_{\phi}(\mathrm{U}(W)) \longrightarrow \mathrm{Irr}(A_{\phi}).$$

The map LL and J enjoy many good properties, like ECR, LIR...

Some previous works

non-Archimedean case:

- **Atobe**—**Gan**: describe theta correspondence of *tempered* reps in terms of the LLC.
- **Bakic**—**Hanzer**: describe theta correspondence of *all* reps based on Atobe—Gan.

Archimedean case:

- Paul: (almost) equal rank cases (i.e. $|\dim V \dim W| \le 1$).
- **Atobe**: describe non-vanishing of theta correspondence of *tempered* reps.
- **Ichino**: describe theta correspondence of *tempered* reps.

For some other purpose (like global classification, functoriality), need to consider an enlargement of L-packets: A-packets.

Local A-parameter and component group

A local A-parameter of $\mathrm{U}(W)$ is an n-dim rep

$$\psi: WD_E \times \mathrm{SL}_2(\mathbb{C}) \longrightarrow \mathrm{GL}_n(\mathbb{C}),$$

which is *conjugate self-dual* of parity $(-1)^{n-1}$. It is said:

■ tempered: if $\psi \mid_{\mathrm{SL}_2(\mathbb{C})}$ is trivial and W_E has bounded image. In general, we can write:

$$\psi = \varphi + \sum_{i} m_i \psi_i + (\varphi^c)^{\vee},$$

where each ψ_i has parity $(-1)^{n-1}$, and φ is bad parity part. Set:

$$A_{\psi} = \prod_{i} \mathbb{Z}/2\mathbb{Z} \, a_{i}.$$

We say ψ is of good parity if $\varphi = 0$.

Working assumptions: local

Since the endoscopic classification of unitary groups has not been completely settled, we shall work under some assumptions:

I For each ψ , the local A-packet $\Pi_{\psi}(\mathrm{U}(W))$ is defined; this is a set over $\mathrm{Irr}_{unit}(\mathrm{U}(W))$ equipped with

$$J: \Pi_{\psi}(\mathrm{U}(W)) \longrightarrow \mathrm{Irr}(A_{\psi}).$$

2 (LIR) If $\psi = \psi_{\tau} + \psi_{0} + (\psi_{\tau}^{c})^{\vee}$, then

$$\Pi_{\psi}(\mathrm{U}(W)) = \left\{ \pi \subset \tau \rtimes \pi_0 \mid \pi_0 \in \Pi_{\psi_0}(\mathrm{U}(W_0)) \right\}.$$

Moreover, if ψ is of good parity, then the NIO $R(\tau \boxtimes \pi_0)$ acts on π by $\epsilon(W)^k J(\pi)(a_\tau)$.

 $\Pi_{\psi}(\mathrm{U}(W))$ is multiplicity free.

Global A-parameter and component groups

 \mathbb{F} : number field, \mathbb{E} : quadratic ext. \mathbb{W} : skew-Herm space over \mathbb{E} .

An A-parameter of $U(\mathbb{W})$ is a formal sum:

$$\Psi = \rho_1 \boxtimes S_{d_1} + \dots + \rho_r \boxtimes S_{d_r},$$

where each ρ_i is an cuspidal rep of some $GL_{k_i}(\mathbb{A}_{\mathbb{E}})$, conjugate self-dual of parity $(-1)^{n+d_i}$, and $k_1d_1+\cdots+k_rd_r=n$. If:

$$\rho_i \boxtimes S_{d_i} \neq \rho_j \boxtimes S_{d_j}$$

whenever $i \neq j$, we say Ψ is elliptic. Set:

$$A_{\Psi} = \prod_{i} \mathbb{Z}/2\mathbb{Z} \, a_{i}.$$

Working assumptions: global

1 $L^2_{disc}([\mathrm{U}(\mathbb{W})])$ decomposes into NECs:

$$L^2_{disc}([\mathbf{U}(\mathbb{W})]) = \widehat{\bigoplus_{\Psi}} L^2_{\Psi}([\mathbf{U}(\mathbb{W})]),$$

with each NEC represented by an elliptic A-parameter;

2 for each elliptic A-parameter Ψ , the character $\epsilon_{\Psi} \in \operatorname{Irr}(A_{\Psi})$ is defined, and AMF is established:

$$L^2_{\Psi}([\mathrm{U}(\mathbb{W})]) = \bigoplus_{\pi \in \Pi_{\Psi}(\mathrm{U}(\mathbb{W}), \epsilon_{\Psi})} \pi,$$

where

$$\Pi_{\Psi}(\mathrm{U}(\mathbb{W}), \epsilon_{\Psi}) = \left\{ \pi \in \bigotimes_{v}' \Pi_{\Psi_{v}}(\mathrm{U}(\mathbb{W}_{v})) \mid J(\pi) = \epsilon_{\Psi} \right\}.$$

Current status for assumptions

```
Local (1)(2) and Global (1)(2):
```

- quasi-split U: by Mok (following Arthur);
- non quasi-split U:
 - tempered case: by Kaletha-Minguez-Shin-White;
 - non-tempered case: onging work by
 - Kaletha-Minguez-Shin;
 - Atobe-Gan-Ichino-Kaletha-Minguez-Shin.

Local (3):

- non-Archimedean: by Mæglin;
- Archimedean: by Mæglin–Renard.

The Adams' conjecture

The Adams' conjecture describes theta correspondence in terms of A-parameter. Suppose that

$$n = \dim W \le m = \dim V$$
.

Conjecture (Adams' conjecture)

Let ψ be a local A-parameter of U(W), and $\pi \in \Pi_{\psi}(U(W))$. If $\theta(\pi) \neq 0$, then

$$\theta(\pi) \in \Pi_{\theta(\psi)}(\mathrm{U}(V)),$$

where

$$\theta(\psi) = \psi \chi_V^{-1} \chi_W + \chi_W \boxtimes S_{m-n}.$$

Some previous works

For symplectic-orthogonal dual pair over F non-Archimedean:

Mæglin:

the Adams' conjecture holds when:

$$m - n \ge \{b - a + 1 \mid \mathbb{1}S_a \boxtimes S_b \subset \psi\}.$$

the Adams' conjecture not always true.

Bakic-Hanzer:

- for a given A-parameter ψ and $\pi \in \Pi_{\psi}$, define a number $d(\pi, \psi)$, and show: the Adams' conjecture holds for (π, ψ) whenever $m > d(\pi, \psi)$.
- give an algorithm to compute $d(\pi, \psi)$.

Ingredients of previous works

Explicit construction of A-packets

Mæglin:

- I firstly prove the stable range case (so automatically $\theta(\pi) \neq 0$ and π does not "live on the boudary" of Kudla's filtration).
- 2 "Descente dans la tour de Witt", generalize the result to a larger range (roughly the largest range so that $\mathbb{1} \boxtimes S_{m-n}$ is the biggest one under some admissible order).

Bakic–Hanzer: Using Moeglin's result as an initial input, produce certain "candidate" of the theta lift, and run B. Xu's algorithm.

Remaining questions

There are still many questions one can ask. For example:

f I Given a local A-parameter ψ of ${\rm U}(W)$, what can we say about

$$\min \left\{ d(\pi, \psi) \mid \pi \in \Pi_{\psi}(\mathrm{U}(W)) \right\}?$$

- 2 In the case that Adams' conjecture holds, what is the relation of $J(\theta(\pi))$ and $J(\pi)$?
- What about unitary dual pairs?

In this talk we will answer (2) and (3) for unitary dual pairs, in the stable range case (i.e. $r_V > n$).

Unlike Mæglin and Bakic-Hanzer, we use a global approach.

Main results

Theorem (C.–Zou)

Suppose $r_V > n$. Let ψ be a local A-parameter of $\mathrm{U}(W)$. Then:

- **1** For any $\pi \in \Pi_{\psi}(\mathrm{U}(W))$, we have $\theta(\pi) \in \Pi_{\theta(\psi)}(\mathrm{U}(V))$.
- **2** The character $\theta(\eta) = J(\theta(\pi))$ can be determined by $\eta = J(\pi)$ as follow:
 - lacksquare if $m,\,n$ different parity: then $heta(\eta)\bigm|_{A_\psi}=\eta;$
 - if m, n same parity: then $\theta(\eta)(a_i)/\eta(a_i) = \epsilon\left(\frac{1}{2}, \psi_i \chi_V^{-1}, \psi_{E,\delta}\right)$.
- **3** The theta correspondence defines a bijection:

$$\theta: \bigsqcup_{W} \Pi_{\psi}(\mathrm{U}(W)) \longrightarrow \Pi_{\theta(\psi)}(\mathrm{U}(V)),$$

where disjoint union runs over all n-dim skew-Herm spaces.

Key ingredients: local

The notion of low rank unitary reps: introduced by Howe, and extended by J-S. Li.

Locally, there is a bijection:

$$(\bigsqcup_{W} \operatorname{Irr}_{unit}(\operatorname{U}(W))) \times \operatorname{Irr}(E^{1})$$

$$\downarrow$$

$$\left\{ \sigma \in \operatorname{Irr}_{unit}(\operatorname{U}(V)) \mid \sigma \text{ is of rank } n \right\}$$

sending a pair (π, χ) in the above set to $\theta(\pi) \otimes \chi \circ \det$.

Key ingredients: global

Globally, if $\Sigma = \otimes_v' \Sigma_v$ irred unitary rep of $\mathrm{U}(\mathbb{V})$ occuring as a subrep of $\mathcal{A}(\mathrm{U}(\mathbb{V}))$, then the following are equivalent:

- **1** Σ is of rank n;
- Σ_v is of rank n for all places v;
- **3** Σ_v is of rank n for some place v.

Moreover, suppose above conditions hold. Then there exists:

- \mathbb{W} : skew-Hermitian space of dim n over \mathbb{E} ;
- \blacksquare $\Pi = \otimes'_v \Pi_v$: irred unitary rep of $U(\mathbb{W})(\mathbb{A}_{\mathbb{F}})$;
- χ : automorphic character of \mathbb{E}^1 ,

s.t.
$$\Sigma = \theta^{abs}(\Pi) \otimes \chi \circ \det$$
, with $\theta^{abs}(\Pi) = \otimes'_v \theta(\Pi_v)$.

An inequality of J-S. Li

Let Π be an irred unitary rep of $U(\mathbb{W})(\mathbb{A}_{\mathbb{F}})$. Define:

$$m(\Pi) = \dim \operatorname{Hom}_{U(\mathbb{W})(\mathbb{A}_{\mathbb{F}})} (\Pi, \mathcal{A}(U(\mathbb{W}))),$$

$$m_{disc}(\Pi) = \dim \operatorname{Hom}_{\mathrm{U}(\mathbb{W})(\mathbb{A}_{\mathbb{F}})} (\Pi, \mathcal{A}^{2}(\mathrm{U}(\mathbb{W}))).$$

Likewise, can define $m\left(\theta^{abs}(\Pi)\right)$ and $m_{disc}(\theta^{abs}(\Pi))$.

Theorem (J-S. Li)

We have the following inequality:

$$m_{disc}(\Pi) \le m_{disc}(\theta^{abs}(\Pi)) \le m(\theta^{abs}(\Pi)) \le m(\Pi).$$

Sketch of the proof of Theorem (1)

STEP 1: Given ψ : local A-parameter of $\mathrm{U}(W)$ of good parity. Globalize the data:

$$(F, E, \psi, V, W) \rightsquigarrow (\mathbb{F}, \mathbb{E}, \Psi, \mathbb{V}, \mathbb{W}),$$

such that:

- lacksquare at a place v: $(\mathbb{F}_v, \mathbb{E}_v, \Psi_v, \mathbb{V}_v, \mathbb{W}_v) = (F, E, \psi, V, W)$;
- lacksquare at a place w: have good control of $A_{\Psi_w}.$

STEP 2: Given $\pi \in \Pi_{\psi}(\mathrm{U}(W))$, globalize it to Π using the AMF of $\mathrm{U}(\mathbb{W})$. Applying J-S. Li's inequality, we have:

$$\theta^{abs}(\Pi) \subset L^2_{disc}(\mathrm{U}(\mathbb{V})).$$

Sketch of the proof of Theorem (1)

STEP 3: Determine the A-parameter $\theta(\Psi)$ of $\theta^{abs}(\Pi)$ by doing some unramified computations. Get:

$$\theta(\Psi) = \Psi \chi_{\mathbb{V}}^{-1} \chi_{\mathbb{W}} + \chi_{\mathbb{W}} \boxtimes S_{m-n}.$$

Then localizing at v:

$$\theta(\pi) = \left(\theta^{abs}(\Pi)\right)_v \in \Pi_{\theta(\Psi)_v}\left(\mathrm{U}(\mathbb{V}_v)\right) = \Pi_{\theta(\psi)}(\mathrm{U}(V)).$$

Sketch of the proof of Theorem (2)

non-Archimedean places: we use an idea of **Atobe**:

• Instead of π and $\theta(\pi)$, consider all $\chi_V \tau_i \rtimes \pi$ and $\chi_W \tau_i \rtimes \theta(\pi)$. Here τ_i is the irred unitary rep of some GL.

Gan-Ichino constructed an diagram:

$$\widetilde{\omega} \otimes (\chi_W \tau \rtimes \theta(\pi)^{\vee}) \longrightarrow \chi_V \tau \rtimes \pi$$

$$1 \otimes R(\chi_W \tau \boxtimes \theta(\pi)^{\vee}) \downarrow \qquad \qquad \downarrow R(\chi_V \tau \boxtimes \pi)$$

$$\widetilde{\omega} \otimes (\chi_W \tau \rtimes \theta(\pi)^{\vee}) \longrightarrow \chi_V \tau \rtimes \pi$$

where $\widetilde{\omega}$ is the Weil rep of some larger groups, and horizontal maps are essentially some Godement–Jacquet integrals. This diagram commutes up to a computable constant. Apply LIR.

Sketch of the proof of Theorem (2)

Archimedean places: similar to the proof of (1), use global method.

STEP 1: Note that in this case $F = \mathbb{R}$ and $E = \mathbb{C}$. Globalize:

$$(F, E, \psi, V, W) \leadsto (\mathbb{Q}, \mathbb{E}, \Psi, \mathbb{V}, \mathbb{W}),$$

such that at one auxiliary place have good control.

STEP 2: Given $\pi \in \Pi_{\psi}(\mathrm{U}(W))$, globalize it to Π using the AMF of $\mathrm{U}(\mathbb{W})$. Applying J-S. Li's inequality, we have:

$$\theta^{abs}(\Pi) \subset L^2_{disc}(\mathcal{U}(\mathbb{V})).$$

STEP 3: Using the AMF of U(V) and (2) of non-Archimedean.

Sketch of the proof of Theorem (3)

To show the surjectivity, for $\sigma \in \Pi_{\theta(\psi)}(\mathrm{U}(V))$, would like to use global method to find its preimage.

 \blacksquare Globalize σ to $\Sigma \subset L^2_{disc}({\rm U}(\mathbb V)),$ s.t. A-parameter of the form:

$$\theta(\Psi) = \Psi \chi_{\mathbb{V}}^{-1} \chi_{\mathbb{W}} + \chi_{\mathbb{W}} \boxtimes S_{m-n}.$$

■ Applying J-S. Li's result, there exists $\Pi \subset \mathcal{A}(U(\mathbb{W}))$, s.t.

$$\Sigma = \theta^{abs}(\Pi).$$

Issue: Need $\Pi \subset \mathcal{A}^2(\mathrm{U}(\mathbb{W}))$ to apply the AMF!

Sketch of the proof of Theorem (3)

Idea: at one auxiliary place w, suitably choose Σ_w s.t.

 \blacksquare Π_w is strictly negative (i.e. Aubert–Zelevinsky dual of d.s.).

Then by the global square-integrable criterion, $\Pi \subset \mathcal{A}^2(\mathrm{U}(\mathbb{W}))$. Localizing at v:

$$\pi = \Pi_v \in \Pi_{\Psi_v}(\mathrm{U}(\mathbb{W}_v)) = \Pi_{\psi}(\mathrm{U}(W)).$$

Turn the tables!

We have shown that: assuming Local (1)(2)(3) and Global (1)(2), then the stable range Adams' conjection holds. In our proof, J-S. Li's inequality is crucial.

Question: can we use the prediction of the Adams' conjecture to deduce some results on the endoscopic classification?

Theorem (C.-Zou)

Let Ψ be an elliptic A-parameter of $U(\mathbb{W})$, and Π an irred unitary rep of $U(\mathbb{W})(\mathbb{A}_{\mathbb{F}})$ in the NEC defined by Ψ . Suppose that either:

- Ψ is tempered; or
- $r_{\mathbb{W}} \leq 1.$

Then we have $m_{disc}(\Pi) = m(\Pi)$.

Turn the tables!

Now only assume Local (1)(2)(3) and Global (1)(2) for q-split U.

 \mathbb{F} : number field, \mathbb{E} : quadratic ext. \mathbb{W} : skew-Herm space over \mathbb{E} .

- Take $\mathbb V$ split Herm space over $\mathbb E$, s.t. $r_{\mathbb V} > \dim \mathbb W$, and $\dim \mathbb V$ has different parity with $\dim \mathbb W$.
- Locally, define:

$$\Pi_{\Psi_v}(\mathrm{U}(\mathbb{W}_v)) = \left\{ \pi \in \mathrm{Irr}_{unit}(\mathrm{U}(\mathbb{W}_v)) \mid \theta(\pi) \in \Pi_{\theta(\Psi_v)}(\mathrm{U}(\mathbb{V}_v)) \right\}.$$

lacksquare Globally, define $\epsilon_{\Psi}=\epsilon_{ heta(\Psi)}\mid_{A_{\pi}}$, and:

$$\Pi_{\Psi}(\mathrm{U}(\mathbb{W}), \epsilon_{\Psi}) = \left\{ \pi \in \bigotimes_{v}' \Pi_{\Psi_{v}}(\mathrm{U}(\mathbb{W}_{v})) \mid J(\pi) = \epsilon_{\Psi} \right\}.$$

Under the condition of above theorem, J-S. Li's inequality is an equality. We obtain the AMF of $U(\mathbb{W})$ from that of $U(\mathbb{V})$.

Turn the tables!

Theorem

1 $L^2_{disc}([\mathrm{U}(\mathbb{W})])$ decomposes into NECs:

$$L^2_{disc}([\mathbf{U}(\mathbf{W})]) = \widehat{\bigoplus_{\Psi}} L^2_{\Psi}([\mathbf{U}(\mathbf{W})]),$$

with each NEC represented by an elliptic A-parameter;

2 Suppose that either Ψ is tempered, or $r_{\mathbb{W}} \leq 1$. Then

$$L^2_{\Psi}([\mathrm{U}(\mathbb{W})]) = \bigoplus_{\pi \in \Pi_{\Psi}(\mathrm{U}(\mathbb{W}), \epsilon_{\Psi})} \pi$$

Remark: This idea was first used by Gan-Ichino to study Mp_{2n} .

Application: special case of twisted GGP

F: local field of char 0; E, K: quadratic extension of F, s.t.

$$L = E \otimes_F K$$

is a biquadratic extension. W: n-dim skew-Herm space over E. The twisted GGP problem concerns about:

$$\operatorname{Hom}_{\mathrm{U}(W)}(\pi,\omega)$$

for $\pi \in Irr(U(W_K))$. Here ω : Weil rep of $U(\ell_1) \times U(W)$.

By the Adams' conjecture, the A-parameter of ω is of the form:

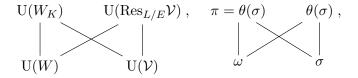
$$\chi + \mu \boxtimes S_{n-1}$$
.

Application: special case of twisted GGP

If V: (n-1)-dim Herm space over L; $\sigma \in Irr(U(V))$, s.t.

$$\pi = \theta(\sigma)$$
.

Consider the seesaw diagram:



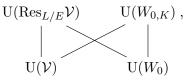
By the Adams' conjecture the A-parameter of $\theta(\omega)$ is of the form:

$$\chi + \mu \boxtimes S_{n-1} + \lambda \boxtimes S_{n-2}$$
.

So it comes from some ω_0 : Weil rep of $U_1 \times U_{n-1}!$

Application: special case of twisted GGP

 W_0 : (n-1)-dim skew-Herm space over E determined by theta dichotomy. Using a similar seesaw diagram



this allow us to reduce the case to twisted GGP of $\mathrm{U}(W_0)$.

Theorem (C.-Gan)

Let ϕ be an L-parameter of $\mathrm{U}(W)$ of the form

$$\chi_1 + \chi_2 + \cdots + \chi_n$$
.

Then the twisted GGP conjecture holds for ϕ .

Further questions

- For irred unitary reps lying in the NEC of an elliptic A-parameter, is J-S. Li's inequality always an equality?
- 2 Gan-Ichino has studied the tempered automorphic spectum of Mp_{2n} , what about the non-tempered spectrum?
- 3 Following Moeglin, one can define local A-packets of Mp_{2n} using stable range theta correspondence $\mathrm{Mp}_{2n} \times \mathrm{SO}_{2r+1}$. Recently there are many works on explicit construction of A-packets of SO_{2r+1} . Can we transfer those results to Mp_{2n} ?

Thank you for your attention!